Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel.

نویسندگان

  • Sungwon Kim
  • Ji Young Kim
  • Kang Moo Huh
  • Ghanashyam Acharya
  • Kinam Park
چکیده

Hydrotropic polymers (HPs) and their micelles have been recently developed as vehicles for delivery of poorly water-soluble drugs, such as paclitaxel (PTX), by oral administration. The release of PTX from HP micelles, however, was slow and it took more than a day for complete release of the loaded PTX. Since the gastrointestinal (GI) transit time is known to be only several hours, pH-sensitive HP micelles were prepared for fast release of the loaded PTX responding to pH changes along the GI tract. Acrylic acid (AA) was introduced, as a release modulator, into HPs by copolymerization with 4-(2-vinylbenzyloxy)-N,N-(diethylnicotinamide) (VBODENA). The AA content was varied from 0% to 50% (in the molar ratio to VBODENA). HPs spontaneously produced micelles in water, and their critical micelle concentrations (CMCs) ranged from 31 microg/mL to 86 microg/mL. Fluorescence probe study using pyrene showed that blank HP micelles possessed a good pH sensitivity, which was clearly observed at relatively high AA contents and pH>6. The pH sensitivity also affected the PTX loading property. Above pH 5, the PTX loading content and loading efficiency in HP micelles were significantly reduced. Although this may be primarily due to the AA moieties, other factors may include PTX degradation and polymer aggregation. The PTX release from HP micelles with more than 20% (mol) AA contents was completed within 12 h in a simulated intestinal fluid (SIF, pH=6.5). The HP micelles without any AA moiety showed very slow release profiles. In the simulated gastric fluid (SGF, pH=1.6), severe degradation of the released PTX was observed. The pH-dependent release of PTX from HP micelles can be used to increase the bioavailability of PTX upon oral delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrotropic polymer micelle system for delivery of paclitaxel.

Hydrotropic polymer micelle system has been developed for delivery of poorly water-soluble drugs such as paclitaxel. Hydrotropic polymers based on N,N-diethylnicotinamide were synthesized and used as a hydrophobic block for constructing amphiphilic block copolymers. The hydrotropic block copolymers self-assembled to form micelles in aqueous media. The size of the prepared polymer micelles was i...

متن کامل

Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization.

The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Die...

متن کامل

A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel.

Paclitaxel (PTX), a potent anti-cancer drug, is poorly soluble in water, and this has been a major limitation in developing patient friendly formulations for clinical applications. Recent studies on polymeric micelles, especially hydrotropic polymer micelles, have suggested an alternative formulation of PTX based on their high loading capacity and physical stability in aqueous media. The presen...

متن کامل

Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin

Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...

متن کامل

Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles.

A new experimental method for in vitro release studies of poorly soluble drugs from polymeric micelle systems was developed using a hydrotropic agent, sodium salicylate. It is difficult to maintain a good sink condition for poorly water-soluble drugs, such as paclitaxel (PTX), because of their low aqueous solubility. In this study, a good sink condition for PTX was achieved by using aqueous sod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 132 3  شماره 

صفحات  -

تاریخ انتشار 2008